Section 1.1

Pythagorean Theorem: For a right triangle with hypotenuse of length c and sides of length a and b, you have $a^{2}+b^{2}=c^{2}$.

Distance Formula: The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Midpoint Formula: The midpoint of a line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the Midpoint Formula:

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

Common Formulas for Area A, Perimeter P, Circumference \boldsymbol{C}, and Volume \boldsymbol{V}

Problems

Problem 1. Plot the points in the Cartesian plane. $A(3,1), B\left(\frac{3}{4},-3\right), C(-3,4), D\left(-\frac{4}{3},-\frac{3}{2}\right)$.

Problem 2. Determine the quadrant(s) in which (x, y) is located so that the condition(s) is (are) satisfied.
a) $x>4$
b) $x>2$ and $y=3$
c) $x y<0$

Problem 3. Show that the points form the vertices of the indicated polygon.
a) Right Triangle: $(1,5),(1,-2),(5,-2)$
b) Isosceles Triangle: $(1,-3),(3,2),(-2,4)$

Problem 4. Find the midpoint of the line segment joining the points $(1,12),(6,0)$.

Problem 5. Find the coordinates of the endpoint of a line segment if the coordinates of the other endpoint and midpoint are, respectively, $(1,-2),(4,-1)$.

Problem 6. The polygon with original coordinates of vertices $(-3,6),(-5,3),(-3,0),(-1,3)$ is shifted down by 3 units and shifted to the left by 6 units. Find the coordinates of the vertices of the polygon in its new position.

Problem 7. The diameter of a cylindrical propane gas tank is 4 feet. The total volume of the tank is 603.2 cubic feet. Find the length of the tank.

Homework for this section: Read section 1.1. Watch any videos (marked with

in the e-book) Also, do the tutorials (marked with π in the e-book).

Do the following problems in preparation for the quiz: \#5, $7,9,15,19,23,27,33,39,43$

